Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J. appl. oral sci ; 31: e20220282, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1430627

ABSTRACT

Abstract Objective This study aimed to evaluate the cytotoxicity and synergistic effect of epigallocatechin gallate (EGCG) and fosfomycin (FOSFO) on biofilms of oral bacteria associated with endodontic infections. Methodology This study determined minimum inhibitory and bactericidal concentration (MIC/MBC) and fractionated inhibitory concentration (FIC) of EGCG and FOSFO against Enterococcus faecalis, Actinomyces israelii, Streptococcus mutans, and Fusobacterium nucleatum. Monospecies and multispecies biofilms with those bacteria formed in polystyrene microplates and in radicular dentin blocks of bovine teeth were treated with the compounds and control chlorhexidine (CHX) and evaluated by bacterial counts and microscopy analysis. Toxicity effect of the compounds was determined on fibroblasts culture by methyl tetrazolium assays. Results The combination of EGCG + FOSFO demonstrated synergism against all bacterial species, with an FIC index ranging from 0.35 to 0.5. At the MIC/FIC concentrations, EGCG, FOSFO, and EGCG+FOSFO were not toxic to fibroblasts. EGCG+FOSFO significantly reduced monospecies biofilms of E. faecalis and A. israelli, whereas S. mutans and F. nucleatum biofilms were eliminated by all compounds. Scanning electron microscopy of multispecies biofilms treated with EGCG, EGCG+FOSFO, and CHX at 100x MIC showed evident biofilm disorganization and substantial reduction of extracellular matrix. Confocal microscopy observed a significant reduction of multispecies biofilms formed in dentin tubules with 84.85%, 78.49%, and 50.6% of dead cells for EGCG+FOSFO, EGCG, and CHX at 100x MIC, respectively. Conclusion EGCG and fosfomycin showed a synergistic effect against biofilms of oral pathogens related to root canal infections without causing cytotoxicity.

2.
J. appl. oral sci ; 25(5): 541-550, Sept.-Oct. 2017. tab, graf
Article in English | LILACS, BBO | ID: biblio-893660

ABSTRACT

Abstract Objectives: Addition of chlorhexidine has enhanced the antimicrobial effect of glass ionomer cement (GIC) indicated to Atraumatic Restorative Treatment (ART); however, the impact of this mixture on the properties of these materials and on the longevity of restorations must be investigated. The aim of this study was to evaluate the effects of incorporating chlorhexidine (CHX) in the in vitro biological and chemical-mechanical properties of GIC and in vivo clinical/ microbiological follow-up of the ART with GIC containing or not CHX. Material and Methods: For in vitro studies, groups were divided into GIC, GIC with 1.25% CHX, and GIC with 2.5% CHX. Antimicrobial activity of GIC was analyzed using agar diffusion and anti-biofilm assays. Cytotoxic effects, compressive tensile strength, microhardness and fluoride (F) release were also evaluated. A randomized controlled trial was conducted on 36 children that received ART either with GIC or GIC with CHX. Saliva and biofilm were collected for mutans streptococci (MS) counts and the survival rate of restorations was checked after 7 days, 3 months and one year after ART. ANOVA/Tukey or Kruskal-Wallis/ Mann-Whitney tests were performed for in vitro tests and in vivo microbiological analysis. The Kaplan-Meier method and Log rank tests were applied to estimate survival percentages of restorations (p<0.05). Results: Incorporation of 1.25% and 2.5% CHX improved the antimicrobial/anti-biofilm activity of GIC, without affecting F release and mechanical characteristics, but 2.5% CHX was cytotoxic. Survival rate of restorations using GIC with 1.25% CHX was similar to GIC. A significant reduction of MS levels was observed for KM+CHX group in children saliva and biofilm 7 days after treatment. Conclusions: The incorporation of 1.25% CHX increased the in vitro antimicrobial activity, without changing chemical-mechanical properties of GIC and odontoblast-like cell viability. This combination improved the in vivo short-term microbiological effect without affecting clinical performance of ART restorations.


Subject(s)
Humans , Male , Female , Child, Preschool , Child , Chlorhexidine/pharmacology , Chlorhexidine/chemistry , Dental Atraumatic Restorative Treatment/methods , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/chemistry , Anti-Infective Agents, Local/pharmacology , Reference Values , Saliva/microbiology , Streptococcus mutans/growth & development , Streptococcus mutans/drug effects , Tensile Strength , Time Factors , In Vitro Techniques , Materials Testing , Candida albicans/growth & development , Candida albicans/drug effects , Colony Count, Microbial , Reproducibility of Results , Analysis of Variance , Treatment Outcome , Statistics, Nonparametric , Biofilms/growth & development , Biofilms/drug effects , Compressive Strength , Fluorides/chemistry , Hardness Tests , Lactobacillus acidophilus/growth & development , Lactobacillus acidophilus/drug effects , Odontoblasts/drug effects
3.
Araçatuba; s.n; 2017. 83 p. graf, tab, ilus.
Thesis in English, Portuguese | LILACS, BBO | ID: biblio-911426

ABSTRACT

O uso de agentes antimicrobianos naturais que reduzam a adesão e proliferação de S. mutans no biofilme poderia ser uma estratégia interessante para o controle da cárie dentária. No entanto, a estabilidade química e física de alguns desses agentes, como os peptídeos catiônicos antimicrobianos e fragmentos de peptídeos, pode ser comprometida por fatores externos, como temperatura e pH, reduzindo sua ação antimicrobiana. Com isso, os objetivos deste estudo foram desenvolver e caracterizar sistemas de liberação de fármaco nanoestruturados bioadesivos para a incorporação dos fragmentos peptídicos D1-23 e P1025 e avaliar seu efeito citotóxico e atividade contra biofilme de S. mutans. A primeira formulação (F1), composta de ácido oleico, polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol (PPCA), Carbopol® 974P e Carbopol® 971P, foi analisada por microscopia de luz polarizada (MLP), reologia e bioadesão in vitro. A concentração inibitória mínima (CIM) e concentração bactericida mínima (CBM) de D1-23 foram determinadas contra S. mutans para posterior avaliação da atividade sobre biofilme formado após 4h e 24h de tratamento. A segunda formulação (F2) foi selecionada a partir de três diferentes concentrações de ácido oleico, PPCA e Carbopol® 974P. Cada formulação foi analisada por MLP, espalhamento de raios x a baixo ângulo (SAXS), reologia e bioadesão. CIM e CBM de P1025 sobre S. mutans e seu efeito quando incorporado ou não em F2 sobre biofilme de S. mutans em formação foram analisados. A citotoxicidade em células epiteliais HaCat foi avaliada para os dois sistemas líquido cristalino (SLC) usando testes de MTT. Análise descritiva foi realizada para os dados dos ensaios de caracterização e para os ensaios microbiológicos e citotóxicos os dados foram submetidos aos testes de ANOVA/Tukey ou Kruskall-Wallis/Mann-Whitney U (p<0.05). Os resultados indicaram que F1 apresentou características de SLC com alta viscosidade e bioadesão. CIM e CBM de D1-23 foram de 15,60 e 31,25µg/mL, respectivamente. D1-23 incorporado em F1 apresentou melhores resultados contra biofilme de S. mutans que quando em solução, após 24h de tratamento. F2 apresentou melhores propriedades reológicas e força bioadesiva comparada aos demais sistemas, caracterizando um SLC. P1025 teve somente efeito inibitório sobre S. mutans (CIM=0.25 mg/mL). O efeito antibiofilme de P1025 incorporado em F2 foi observado após 24h de tratamento, principalmente quando aplicado na fase de adesão. Ambos os SLC contendo D1-23 e P1025 não apresentaram toxicidade sobre as células epiteliais, nas condições de tempo e concentrações avaliadas. A incorporação de peptídeos em SLC bioadesivos nanoestruturados aumenta suas propriedades antimicrobianas, podendo ser uma interessante estratégia para a prevenção da cárie dentária(AU)


The use of natural antimicrobial agents for reducing the adhesion and proliferation of S. mutans in the biofilm could be an interesting strategy for the control of dental caries. However, the chemical and physical stability of some natural antimicrobials, such as cationic antimicrobial peptides and peptide fragments, can be compromised by external factors such as temperature and pH, reducing their antimicrobial action. Thus, the objectives of this study were to develop and characterize nanostructured bioadhesive drug delivery systems for the incorporation of D1-23 and P1025 peptide fragments and to evaluate their citotoxicy and activity against S. mutans biofilm. The first formulation (F1) was composed of oleic acid, polyoxypropylene- (5) -polyoxyethylene- (20) - cetyl alcohol (PPCA), Carbopol® 974P and Carbopol® 971P and analyzed by polarized light microscopy (PLM), rheology and in vitro bioadhesion. Minimum inhibitory concentration (MIC) and minimal bacterial concentration (MBC) of D1-23 were determined against S. mutans for further evaluation of activity against S. mutans biofilm after 4h and 24h of treatment. The second formulation was selected from three different concentrations of oleic acid, PPCA and Carbopol® 974P. Each formulation was analyzed by PLM, small-angle x-ray scattering (SAXS), rheology and bioadhesion. MIC and MBC of P1025 were determined against S. mutans. Thus, P1025 was incorporated in the best formulation (F2). The effect of P1025 incorporated or not into F2 on S. mutans biofilm formation was analyzed. Cytotoxicity in HaCat epithelial cells for both formulations was evaluated using MTT assays. Descriptive analysis was performed for the characterization assays and data from microbiological and cytotoxic assays were submitted to ANOVA / Tukey or Kruskall-Wallis / Mann-Whitney U (p<0.05). The results indicated that F1 presented characteristics of liquid-crystalline type system (LCS) with high viscosity and bioadhesion. The MIC and MBC of D1-23 were 15.60 and 31.25µg / mL, respectively. D1-23 incorporated in F1 showed better results than D1-23 in solution against S. mutans biofilm after 24h. F2 had better rheological properties and bioadhesive strength compared to other systems analyzed and characteristics of LCS. P1025 had only inhibitory effect against S. mutans (MIC=0.25mg/mL). The antibiofilm effect of P1025 incorporated into F2 was observed after 24h of treatment, mainly when applied in surface-bound salivary phase. Both LCS had no toxicity on epithelial cells, considering time and concentrations tested. The incorporation of peptides in nanostructured bioadhesive LCS increased their antimicrobial properties and could be an interesting strategy for caries prevention(AU)


Subject(s)
Antimicrobial Cationic Peptides , Dental Caries , Streptococcus mutans , Biofilms , Drug Delivery Systems
4.
Braz. oral res. (Online) ; 29(1): 1-8, 2015. tab, ilus
Article in English | LILACS | ID: lil-777254

ABSTRACT

Anti-dentin autoantibodies are associated with inflammatory root resorption in permanent teeth and are modulated by dental trauma and orthodontic force. However, it is not known whether deciduous tooth trauma can stimulate the development of a humoral immune response against dentin. The aim of this study was to evaluate the levels of salivary SIgA reactivity against human dentin extract in young adults with a history of trauma in the primary dentition. A sample of 78 patients, aged 18 to 25, who had completed an early childhood (0 to 5 years old) caries prevention program years earlier at the Universidade Estadual de LondrinaPediatric Clinic, underwent radiographic examination and salivary sampling. Anti-dentin SIgA levels were analyzed by immunoenzymatic assay and Western blotting. Although dental trauma to deciduous teeth had occurred in 34 (43.6%) of the patients, no differences in SIgA levels were detected between individuals who had experienced trauma and those who had not (p > 0.05). Multivariate regression analysis showed no association between dental trauma and SIgA levels (p > 0.05). Patients with a history of deciduous trauma presented low levels of anti-dentin antibodies, associated with orthodontic root resorption (p < 0.05). Western blot analysis showed that salivary antibodies recognized a single band of approximately 45 kDa in dentin extract. We concluded that salivary SIgA recognizes a specific component of the dentin matrix and that anti-dentin antibodies were not triggered by trauma to primary teeth. However, trauma to deciduous teeth may down-modulate SIgA in response to orthodontic root response.


Subject(s)
Adolescent , Adult , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Young Adult , Dentin/immunology , Immunoglobulin A, Secretory/immunology , Root Resorption/immunology , Tooth Resorption , Tooth, Deciduous/immunology , Dentin/injuries , Immunoglobulin A, Secretory/analysis , Root Resorption/etiology , Saliva/immunology , Tooth, Deciduous/injuries
SELECTION OF CITATIONS
SEARCH DETAIL